Journal of Organometallic Chemistry, 421 (1991) 241–246 Elsevier Sequoia S.A., Lausanne JOM 22180

Preparation and spectroscopic properties of a series of new bimetallic phosphine-bridged seven-coordinate complexes of the type $[M_2I_4(CO)_6L_2(\mu - \widehat{L} \widehat{L})]$ {M = Mo or W; $L = PPh_3$, AsPh₃ or SbPh₃; $\widehat{L} \widehat{L} = Ph_2P(CH_2)_nPPh_2$ (n = 1, 2 or 4); $\widehat{L} \widehat{L} = [Fe(\eta^5 - C_5H_4PPh_2)_2]$ }

Paul K. Baker *, Marit van Kampen and Dafydd ap Kendrick Department of Chemistry, University of Wales, Bangor, Gwynedd LL57 2UW (UK) (Received May 17th, 1991)

Abstract

Reaction of the complexes $[MI_2(CO)_3(NCMe)_2](M = Mo \text{ or } W)$ with one equivalent of $L(L = PPh_3, AsPh_3 \text{ or } SbPh_3)$ in CH_2Cl_2 at room temperature gives $[MI_2(CO)_3(NCMe)L]$, which when treated *in situ* with half an equivalent of $\widehat{LL}(\widehat{LL} = Ph_2P(CH_2)_nPPh_2, n = 1, 2 \text{ or } 4; \widehat{LL} = [Fe(\eta^5-C_5H_4PPh_2)_2])$ affords the new bimetallic seven-coordinate complexes $[M_2I_4(CO)_6L_2(\mu - \widehat{LL})]$ in high yield. ³¹P NMR studies suggest that reaction of $[WI_2(CO)_3(NCMe)(AsPh_3)]$ with an equimolar amount of $Ph_2P(CH_2)_4PPh_2$ gives a mixture of $[W_2I_4(CO)_6(AsPh_3)_2(\mu - Ph_2P(CH_2)_4PPh_2)]$, $[WI_2(CO)_3(AsPh_3)-(\eta^1-Ph_2P(CH_2)_4PPh_2)]$ and unchanged $Ph_2P(CH_2)_4PPh_2$.

Introduction

Bimetallic complexes containing bridging bidentate phosphine donor ligands have received considerable attention in recent years [1–5]. Although, for example, Hor [6] has described the synthesis of the zero-valent six-coordinate complexes $[Mo_2(CO)_{10}\{\mu-Ph_2P(CH_2)_nPPh_2\}]$ (n = 2 or 3) by oxidative decarbonylation of $[Mo(CO)_6]$ with ONMe₃ in the presence of Ph₂P(CH₂)_nPPh₂, there has been little work carried out on bimetallic seven-coordinate complexes of molybdenum(II) or tungsten(II). We describe below a simple stepwise synthesis of the new bimetallic phosphine-bridged seven-coordinate complexes $[M_2I_4(CO)_6L_2(\mu-\widehat{L}L)]$ (M = Moor W; L = PPh₃, AsPh₃ or SbPh₃; $\widehat{L}L = Ph_2P(CH_2)_nPPh_2$, n = 1, 2 or 4, or $[Fe(\eta^5-C_5H_4PPh_2)_2]$).

Results and discussion

The starting materials for this research, the complexes $[MI_2(CO)_3(NCMe)_2]$ (M = Mo or W) [7] were prepared by reaction of the trisacetonitrile complexes

0022-328X/91/\$03.50 © 1991 - Elsevier Sequoia S.A. All rights reserved

 $[M(CO)_{2}(NCMe)_{2}]$ [8] in situ with an equimolar amount of I₂. Equimolar quantities of $[MI_2(CO)_3(NCMe)_2]$ (M = Mo or W) and L (L = PPh₃, AsPh₃ or SbPh₃) react in CH₂Cl₂ at room temperature to give [MI₂(CO)₂(NCMe)L] which have been isolated and fully characterised [9]. These [MI₂(CO)₂(NCMe)L] complexes react in situ with half an equivalent of \widehat{LL} { $\widehat{LL} = Ph_2P(CH_2)_nPPh_2$, n = 1, 2 or 4; $\widehat{LL} = [Fe(\eta^5 - C_5H_4PPh_2)_2]$ to give high yields of the bimetallic complexes 1-24. The new bimetallic complexes 1-24 are stable in the solid state when stored under nitrogen and have been fully characterised by elemental analysis (C, H and N), IR and ¹H NMR spectroscopy (Tables 1-3). The complexes 1, 4, 11, 14, 15, 19 and 20 were confirmed as either CH₂Cl₂ or 2CH₂Cl₂ solvates by repeated elemental analyses and ¹H NMR spectroscopy. The dinuclear nature of these compounds is suggested by molecular weight measurements on several complexes by the Rast method [10] (see Experimental section). Magnetic susceptibility measurements on compounds 1-24 show them to be diamagnetic. This was expected since the seven-coordinate molybdenum(II) and tungsten(II) complexes $[M_2I_4(CO)_6L_2(\mu \widehat{L L}$ (1-24) obev the effective atomic number rule. Compounds 1-24 are moderately soluble in CH₂Cl₂ and CHCl₃, and slightly soluble in Et₂O.

Many unsuccessful attempts were made to grow single crystals for X-ray crystallography in order to elucidate the solid state structure of these complexes. The most likely structure for these seven-coordinate complexes is capped octahedral, since the vast majority of seven-coordinate mononuclear complexes of molybdenum(II) and tungsten(II) have this geometry [11] including [WI₂(CO)₃(NCMe)₂] [12]. The ³¹P-{¹H} NMR spectrum of [W₂I₄(CO)₆(AsPh₃)₂{ μ -Ph₂P(CH₂)₄PPh₂}] (17) (CDCl₃, -25 °C) showed a single resonance at δ = 0.1 ppm due to the bimetallically coordinated Ph₂P(CH₂)₄PPh₂. The IR { ν (CO)} pattern closely resembles those found in mononuclear bisphosphine complexes of the type [MX₂(CO)₃L₂] which generally have been found to have capped octahedral geometry [11,12].

It is noteworthy that reaction of $[WI_2(CO)_3(NCMe)(AsPh_3)]$ (prepared *in situ*) with one equivalent of Ph₂P(CH₂)₄PPh₂ gave a mixture of $[W_2I_4(CO)_6(AsPh_3)_2 - {\mu-Ph_2P(CH_2)_4PPh_2}]$ (17), $[WI_2(CO)_3(AsPh_3)\{\eta^1-Ph_2P(CH_2)_4PPh_2\}]$ and unreacted Ph₂P(CH₂)₄PPh₂. The ³¹P-{¹H} (CDCl₃, +25 °C) NMR spectrum of this mixture showed resonances at $\delta = 0.1$ ppm due to $[W_2I_4(CO)_6(AsPh_3)_2\{\mu-Ph_2P(CH_2)_4PPh_2\}]$ (17), $\delta = -1.1$ and -11.1 ppm due to $[WI_2(CO)_3(AsPh_3)\{\eta^1-Ph_2P(CH_2)_4PPh_2\}]$ and $\delta = -17.1$ ppm due to unreacted Ph₂P(CH₂)₄PPh₂.

Experimental

The preparation and purification of the complexes described were carried out under nitrogen by standard Schlenk line techniques. The complexes $[MI_2(CO)_3(NCMe)_2]$ (M = Mo or W) were prepared by the published method [7]. All chemicals used were obtained from commercial sources. Dichloromethane was dried and distilled before use. Elemental analyses (C, H and N) were carried out with a Carlo Erba elemental analyser MOD 1106 (with helium as a carrier gas) by Mr. E. Lewis of this Department. IR spectra were recorded on a Perkin–Elmer 1430 ratio recording infrared spectrophotometer. ¹H NMR spectra were recorded on a Bruker AC 250 CP/MAS NMR spectrometer, with tetramethylsilane as

Complexes	Colour	Yield (%)	Analysis (Found (calc.) (%))	
			C	Н
$\frac{1 [Mo_2 I_4 (CO)_6 (PPh_3)_2 [\mu - Ph_2 P(CH_2) PPh_2]] \cdot CH_2 CI_2}{1 [Mo_2 I_4 (CO)_6 (PPh_3)_2 [\mu - Ph_2 P(CH_2) PPh_2]] \cdot CH_2 CI_2}$	Beige	84	43.9	3.1
			(43.9)	(3.0)
$2 \left[Mo_2 I_4(CO)_6(AsPh_3)_2 \{\mu - Ph_2 P(CH_2) PPh_2 \} \right]$	Light	79	42.5	3.1
	brown		(43.2)	(2.8)
$3 [Mo_2I_4(CO)_6(SbPh_3)_2{\mu-Ph_2P(CH_2)PPh_2}]$	Brown	79	40.6	3.0
			(41.1)	(2.7)
$4 [W_2 I_4 (CO)_6 (PPh_3)_2 [\mu - Ph_2 P(CH_2) PPh_2]] \cdot CH_2 CI_2$	Yellow	61	39.8	2.5
	beige	-	(39.5)	(2.6)
$5 [W_2 I_4 (CO)_6 (AsPh_3)_2 \{\mu - Ph_2 P(CH_2) PPh_2\}]$	Orange	59	39.5	2.9
	•	50	(39.4)	(2.6)
$6 [W_2 I_4 (CO)_6 (SbPh_3)_2 [\mu - Ph_2 P(CH_2) PPh_2]]$	Orange	50	37.6	2.8
$\pi(M_{-1}, (CO), (DDL))$ (DL D(CU)) DDL)]	D . 1	97	(37.7)	(2.5)
$7 [MO_2 I_4 (CO)_6 (PPN_3)_2 (\mu - PN_2 P(CH_2)_2 PPN_2)]$	Dark	80	45.0	3.1
$P(M_0, L(CO))(A_0D_0)$ [, DF D(CLL) DDF)]	green	54	(45.6)	(3.0)
$\sigma[MO_2^{-1}_4(CO)_6(ASFII_3)_2(\mu - FII_2^{-1}(CFI_2)_2FFII_2)]$	Deige	54	42.0	3.1 (2.0)
$Q[M_0, I(CO)(ShPh)]$	Brown	75	(43.3)	2.9)
$\gamma [m_{214}(CO)_{6}(SOI m_{3})_{2}(\mu - 1 m_{2}) (CII_{2})_{2}(1 m_{2})]$	DIOWII	15	(11.7)	(2.9
$10 [W_a L(CO)_{(PPh_a)_a} \{ \mu_{Ph_a} P(CH_a)_a PPh_a \}]$	Light	98	41.4)	3.0
	oreen	20	(41.5)	(2.8)
11 [WaL(CO)(AsPha)a{u-PhaP(CHa)aPPha}]·CHaCla	Yellow	52	38.5	2.0)
	101100		(38.8)	(2.6)
12 $[W_2I_4(CO)_6(SbPh_2)_2(\mu-Ph_2P(CH_2)_2PPh_2)]$	Dark	96	38.2	2.6
	orange	-	(37.8)	(2.5)
13 $[Mo_2I_4(CO)_6(PPh_3)_2{\mu-Ph_2P(CH_2)_4PPh_2}]$	Dark	84	45.9	3.6
	green		(46.2)	(3.2)
14 $[Mo_2I_4(CO)_6(AsPh_3)_2[\mu-Ph_2P(CH_2)_4PPh_2]] \cdot CH_2Cl_2$	Green	86	42.8	3.3
			(42.8)	(3.0)
$15 [Mo_2I_4(CO)_6(SbPh_3)_2 {\mu-Ph_2P(CH_2)_4PPh_2}] \cdot 2CH_2CI_2$	Brown	60	39.5	2.8
			(39.9)	(2.9)
16 $[W_2I_4(CO)_6(PPh_3)_2\{\mu - Ph_2P(CH_2)_4PPh_2\}]$	Yellow	80	41.6	3.1
	green		(42.2)	(2.9)
$17 [W_2 I_4 (CO)_6 (AsPh_3)_2 \{\mu - Ph_2 P(CH_2)_4 PPh_2\}]$	Yellow	86	39.7	3.1
	orange		(40.4)	(2.8)
$18[W_2I_4(CO)_6(SbPh_3)_2(\mu-Ph_2P(CH_2)_4PPh_2)]$	Orange	89	38.8	2.8
$10[M_{\odot}, 1, (CO), (DDL)] ([E_{\odot}(-5, C, 11, DDL))] (11, CL)$	D 1	0.1	(38.6)	(2.7)
$I = [MO_2I_4(CO)_6(PPn_3)_2(\mu - [Pe(\eta^3 - C_5H_4PPn_2)_2])] \cdot CH_2CI_2$	Dark	91	45.7	3.1
20 $[M_0, L(CO), (A_s Bb_s)] ((E_{\alpha}(-5C, H, BDb_s)))]$	Breen	61	(45.5)	(3.0)
$20 [MO_2 I_4 (CO)_6 (Asrn_3)_2 (\mu - [FC(\eta - C_5 \Pi_4 FFn_2)_2])] C \Pi_2 C I_2$	2 DIOWII	01	43.4 (42.4)	3.3
21 [Mo. L.(CO). (ShPh.). {[Fe(Dark	84	(43.4)	(3.4)
$= [((0)_{214}(0)_{6}(0)(0)_{1372}(\mu - (1)_{6}(0)(\eta - 0)_{5114}(1)_{1272}))]$	brown	04	(42.9	(2.8)
22 $[W_{2}L(CO)_{2}(PPh_{2})_{3} \{u_{1} = [Fe(\pi^{5} - C_{2}H_{1}, PPh_{2})_{3}]\}$	Dark	88	42.37	2.0
	green		(43.0)	(2.8)
23 $[W_2I_4(CO)_6(A_sPh_3)_2[\mu-[Fe(\pi^5-C_sH_4PPh_3)_3]]$	Orange	94	41.1	2.9
	brown		(41.3)	(2.7)
24 $[W_2I_4(CO)_6(SbPh_3)_2{\mu-[Fe(\eta^5-C_5H_4PPh_2)_2]}]$	Orange	82	39.5	2.7
			(39.6)	(2.5)

Table 1 Physical and analytical data for the complexes $[M_2I_4(CO)_6L_2(\mu \cdot \widehat{LL})]$

Complex	$\nu(CO) (cm^{-1})$		· <u>·</u> ··································	
1	2040s	1938s	1860s	
2	2005s	1964s	1930s	
3	2004s	1938s	1858s	
4	1998s	1920s	1900s	
5	2000s	1948s	1900s	
6	2000s	1938s	1902s	
7	2020s	1958br	1920br	
8	2009s	1958s	1920br	
9	2008s	1955s	1892s	
10	2008s	1942s	1910s	
11	2020s	1945s	1915s	
12	2009s	1944s	1912s	
13	2008s	1960s	1921s	
14	2020s	1958s	1922s	
15	2010s	1956s	1918s	
16	2002s	1939s	1904s	
17	2005s	1939s	1910s	
18	2004s	1938s	1905s	
19	2010s	1932s	1898s	
20	2005s	1959s	1896s	
21	2004s	1958s	1890s	
22	2006s	1942s	1910s	
23	2004s	1944s	1908s	
24	2002s	1943s	1904s	

Infrared data " for the complexes $[M_2I_4(CO)_6L_2(\mu-\widehat{L})]$

^a Spectra recorded in CHCl₃ as thin films between NaCl plates; s, strong; br, broad.

reference. ³¹P-{¹H} NMR spectra were also recorded on a Bruker AC 250 CP/MAS NMR spectrometer, with 85% H_3PO_4 as reference. Molecular weights of selected complexes were determined by the Rast method [10]. Magnetic susceptibility measurements were determined with a Johnson-Matthey magnetic susceptibility balance.

$[Mo_{2}I_{4}(CO)_{6}(PPh_{3})_{2}\{\mu-Ph_{2}P(CH_{2})PPh_{3}\}] \cdot CH_{2}Cl_{2}(1)$

To a stirred solution of $[MoI_2(CO)_3(NCMe)_2]$ (0.500 g, 0.969 mmol) in CH₂Cl₂ (20 cm³) under a stream of nitrogen was added PPh₃ (0.254 g, 0.969 mmol). The solution was stirred for 1 min and Ph₂P(CH₂)PPh₂ (0.186 g, 0.485 mmol) then added and the mixture stirred for a further 3 h. Filtration, followed by removal of the solvent *in vacuo* gave beige crystals of $[Mo_2I_4(CO)_6(PPh_3)_2(\mu-Ph_2P(CH_2)PPh_2)] \cdot CH_2Cl_2$ (1) (yield = 0.76 g, 84%), which were recrystallised from CH₂Cl₂/Et₂O. Molecular weight for $[Mo_2I_4(CO)_6(PPh_3)_2(\mu-Ph_2P(CH_2)PPh_2)] \cdot CH_2Cl_2$ (1), found: 1767; C₆₈H₅₄I₄Mo₂O₆P₄Cl₂ calc.: 1861.

Similar reactions of $[MI_2(CO)_3(NCMe)_2]$ (M = Mo or W) with an equimolar quantity of L (L = PPh₃, AsPh₃ or SbPh₃) to give $[MI_2(CO)_3(NCMe)L]$, followed by reactions with half an equivalent of Ph₂P(CH₂)_nPPh₂ (n = 1, 2 or 4) or $[Fe(\eta^5-C_5H_4PPh_2)_2]$ afforded the phosphine-bridged complexes $[M_2I_4(CO)_6L_2\{\mu-Ph_2P(CH_2)PPh_2\}]$ (2–18) or $[M_2I_4(CO)_6L_2\{\mu-Fe(\eta^5-C_5H_4PPh_2)_2]\}]$ (19–24). Reaction times for $2[MI_2(CO)_3(NCMe)_2] + 2L \rightarrow 2[MI_2(CO)_3(NCMe)L] + 2NCMe$

Table 2

Table 3

Complex	¹ H NMR δ (ppm)
1	7.6-7.1 (brm, 50H, Ph); 5.3 (s, 2H, CH ₂ Cl ₂); 4.9 (brm, 2H, PCH ₂ P)
2	7.7–7.1 (brm, 50H, Ph); 4.9 (brm, 2H, PCH ₂ P)
3	8.1–7.2 (brm, 50H, Ph); 5.3 (brm, 2H, PCH ₂ P)
4	7.7–7.3 (brm, 50H, Ph); 5.31 (s, 2H, CH ₂ Cl ₂); 5.1 (brm, 2H, PCH ₂ P)
5	7.7-7.3 (brm, 50H, Ph); 5.35 (brm, 2H, PCH ₂ P)
6	7.7–7.4 (brm, 50H, Ph); 5.35 (brm, 2H, PCH ₂ P)
7	7.9–7.3 (brm, 50H, Ph); 2.9 (brm, 4H, PCH ₂ CH ₂ P)
8	7.9–7.3 (brm, 50H, Ph); 2.9 (brm, 4H, PCH ₂ CH ₂ P)
9	8.1-7.4 (brm, 50H, Ph); 2.8 (brm, 4H, PCH ₂ CH ₂ P)
10	7.9-7.3 (brm, 50H, Ph); 2.8 (brm, 4H, PCH ₂ CH ₂ P)
11	7.8–7.3 (brm, 50H, Ph); 5.3 (s, 2H, CH ₂ Cl ₂); 2.8 (brm, 4H, PCH ₂ CH ₂ P)
12	7.9–7.3 (brm, 50H, Ph); 2.9 (brm, 4H, PCH_2CH_2P)
13	8.1-7.3 (brm, 50H, Ph); 5.32 (s, 2H, CH ₂ Cl ₂); 3.2 (brm, 4H, PCH ₂);
	2.2 (brm, 4H, PCH_2CH_2)
14	7.9-7.3 (brm, 50H, Ph); 5.3 (s, 2H, CH ₂ Cl ₂); 3.1 (brm, 4H, PCH ₂);
	2.1 (brm, 4H, PCH_2CH_2)
15	8.1-7.7 (brm, 50H, Ph); 5.32 (s, 4H, CH ₂ Cl ₂); 3.15 (brm, 4H, PCH ₂);
	2.05 (brm, 4H, PCH_2CH_2)
16	7.7–7.3 (brm, 50H, Ph); 3.25 (brm, 4H, PCH ₂); 2.0 (brm, 4H, PCH ₂ CH ₂)
17	7.7–7.3 (brm, 50H, Ph); 3.2 (brm, 4H, PCH ₂); 1.8 (brm, 4H, PCH ₂ CH ₂)
18	7.8–7.3 (brm, 50H, Ph); 3.1 (brm, 4H, PCH ₂); 1.9 (brm, 4H, PCH ₂ CH ₂)
19	7.95–7.35 (brm, 50H, Ph); 5.3 (s, 2H, CH ₂ Cl ₂); 4.78, 4.7, 4.32, 4.24
	$(4xs, 8H, C_5H_4)$
20	7.7–7.3 (brm, 50H, Ph); 5.31 (s, 2H, CH_2CI_2); 5.0, 4.8, 4.38, 4.32
21	$(4x_5, 011, 0.511_4)$ 7.0.7.2 (here 5011 Db): 4.0.4.7 (2mg 911 C 11)
21	7.0 – 7.3 (Drm, 50H, Ph); 4.9, 4.7 (2x3, 0H, C_5H_4) 7.0 – 7.25 (hrm 50H, Ph); 4.7 (2x3, 0H, C 5H)
22	$7.9 - 7.55$ (UTIII, 5UTI, FIJ; 4.7, 4.55 (2xs, δ TI, C_5 T ₄) 7.85 - 7.1 (here, 5011, Th); 4.72, 4.29 (2ms, 811, C, 11,)
43 24	7.05 – 7.1 (01111, 50(1, 1)); 4.72, 4.50 (2x8, 0(1, 0.5 (1, 4)) 7.75 – 7.24 (berry 50(1, Db)); 4.7, 4.25 (2rr, 9(1, 0, 14))
	$(1.13 - 1.24 \text{ (01III, 30H, PII); } 4.1, 4.33 \text{ (238, 8H, } \text{C}_5\text{H}_4)$

¹H NMR data ^{*a*} for the complexes $[M_2I_4(CO)_6L_2(\mu-\widehat{LL})]$

^a Spectra recorded in CDCl₃ (+25°C) referenced to SiMe₄; s, singlet; brm, broad multiplet.

and $2[MI_2(CO)_3(NCMe)L] + Ph_2P(CH_2)PPh_2 \rightarrow [M_2I_4(CO)_6L_2(\mu-Ph_2P(CH_2)PPh_2)] + 2NCMe at 25 °C are: (2) M = Mo, L = AsPh_3, 3 min, Ph_2P(CH_2)PPh_2, 3 h. (3) M = Mo, L = SbPh_3, 5 min, Ph_2P(CH_2)PPh_2, 3 h. Similar reaction times were used for the complexes 4-24. Molecular weight for <math>[W_2I_4(CO)_6(PPh_3)_2\{\mu-Ph_2P(CH_2)_2PPh_2\}]$ (10), found: 1823. $C_{68}H_{54}I_4O_6P_4W_2$ calc.: 1976. Molecular weight for $[Mo_2I_4(CO)_6(AsPh_3)_2\{\mu-Ph_2P(CH_2)_2PPh_2\}] \cdot CH_2Cl_2$ (14), found: 1986. $C_{71}H_{60}I_4Mo_2O_6P_2As_2Cl_2$ calc.: 1991. Molecular weight for $[W_2I_4(CO)_6(SPPh_3)_2\{\mu-Fe(\eta^5-C_5H_4PPh_2)_2]]$ (24), found: 1953. $C_{76}H_{58}FeI_4O_6P_2W_2Sb_2$ calc.: 2248. For physical and analytical data, see Table 1.

Acknowledgements

We thank the final year single honours chemistry students at Bangor in the session 1990/1991 for obtaining some of the ¹H NMR spectra and measuring some of the magnetic susceptibilities of the complexes.

References

- 1 A. Blagg and B.L. Shaw, J. Chem. Soc., Dalton Trans., (1987) 221.
- 2 A. Blagg, B.L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., (1987) 769.
- 3 G.B. Jacobsen, B.L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., (1987) 1489.
- 4 A. Blagg, P.G. Pringle and B.L. Shaw, J. Chem. Soc., Dalton Trans., (1987) 1495.
- 5 G.B. Jacobsen, B.L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., (1987) 1509.
- 6 T.S.A. Hor, J. Organomet. Chem., 319 (1987) 213.
- 7 P.K. Baker, S.G. Fraser and E.M. Keys, J. Organomet. Chem., 309 (1986) 319.
- 8 D.P. Tate, W.R. Knipple and J.M. Augl, Inorg. Chem., 1 (1962) 433.
- 9 P.K. Baker and S.G. Fraser, Transition Met. Chem., 12 (1987) 560.
- 10 F.G. Mann and B.C. Saunders, Practical Organic Chemistry, Longman's Green and Co. Ltd. London, 1954, pp. 342-344.
- 11 M.G.B. Drew, Prog. Inorg. Chem., 23 (1977) 67.
- 12 M.G.B. Drew, P.K. Baker, E.M. Armstrong and S.G. Fraser, Polyhedron, 7 (1988) 245.